Существующие между явлениями формы и виды связей весьма разнообразны по своей классификации. Предметом статистики являются только такие из них, которые имеют количественный характер и изучаются с помощью количественных методов. Рассмотрим метод корреляционно-регрессионного анализа, который является основным в изучении взаимосвязей явлений.
Данный метод содержит две свои составляющие части - корреляционный анализ и регрессионный анализ. Корреляционный анализ - это количественный метод определения тесноты и направления взаимосвязи между выборочными переменными величинами. Регрессионный анализ - это количественный метод определения вида математической функции в причинно-следственной зависимости между переменными величинами.
Для оценки силы связи в теории корреляции применяется шкала английского статистика Чеддока.
Линейная корреляция
Данная корреляция характеризует линейную взаимосвязь в вариациях переменных. Она может быть парной (две коррелирующие переменные) или множественной (более двух переменных), прямой или обратной - положительной или отрицательной, когда переменные варьируют соответственно в одинаковых или разных направлениях.
Если переменные - количественные и равноценные в своих независимых наблюдениях при их общем количестве
, то важнейшими эмпирическими мерами тесноты их линейной взаимосвязи являются коэффициент прямой корреляции знаков австрийского психолога Г.Т. Фехнера (1801-1887) и коэффициенты парной, чистой (частной) и множественной (совокупной) корреляции английского статистика-биометрика К. Пирсона (1857-1936).
Коэффициент парной корреляции знаков Фехнера
определяет согласованность направлений в индивидуальных отклонениях переменных и
от своих средних
и
. Он равен отношению разности сумм совпадающих (
) и несовпадающих (
) пар знаков в отклонениях
и
к сумме этих сумм:
(13)
Величина Кф изменяется от - 1 до +1. Суммирование в (1) производится по наблюдениям, которые не указаны в суммах ради упрощения. Если какое-то одно отклонение
или
, то оно не входит в расчет. Если же сразу оба отклонения нулевые:
, то такой случай считается совпадающим по знакам и входит в состав
.
Коэффициенты парной, чистой (частной) и множественной (совокупной) линейной корреляции Пирсона, в отличие от коэффициента Фехнера, учитывают не только знаки, но и величины отклонений переменных.
Для их расчета используют разные методы. Так, согласно методу прямого счета по несгруппированным данным, коэффициент парной корреляции Пирсона имеет вид:
(14)
Этот коэффициент также изменяется от - 1 до +1.
При наличии нескольких переменных рассчитывается коэффициент множественной (совокупной) линейной корреляции Пирсона. Для трех переменных x, y, z он имеет вид
(15)
Особенности структурно-отраслевой политики в регионе
С
каждым годом усиливается потребность страны в разработке и проведении эффективной
структурной политики, которая позволила бы упрочить позиции российской
промышленности. Структурная промышленная политика является чрезвычайно ...
Организация финансово-экономической деятельности ООО Лениногорское управление тампонажных работ
ОБЩЕЕ ОЗНАКОМЛЕНИЕ С ПРЕДПРИЯТИЕМ
...